National Repository of Grey Literature 5 records found  Search took 0.00 seconds. 
Modulation of activities and expression of enzymes metabolizing ellipticine by histone deacetylase inhibitor trichostatin A
Kopejtková, Barbora ; Stiborová, Marie (advisor) ; Kubíčková, Božena (referee)
Histone deacetylase inhibitor trichostatin A (TSA) increases cytotoxicity of antineoplastic agent ellipticine to human neuroblastoma cells. Its mechanism of action has not yet been explained. One of the possible mode of action is conformational change in chromatin, which leads to changes in DNA that is more accessible to covalent modification and intercalation. The aim of this work is to study another mode of action, which can explain this phenomenon. The question is, if TSA can increase cytotoxicity of ellipticine to human neuroblastoma cells by modulation of activities and expression of cytochromes P450 and peroxidases. These enzymes are responsible for cytotoxicity of ellipticine to human neuroblastoma cells. TSA has no effect on oxidation of ellipticine mediated by cytochromes P450 leading to metabolites responsible for formation of ellipticine-DNA adducts and detoxication metabolites. TSA increases formation of ellipticine dimer, which is a detoxication metabolite, forming during its oxidation by peroxidases. TSA has no effect on activities of CYP1A1, CYP1A2, CYP3A, which significantly participate in oxidation of ellipticine. TSA modulates expression of enzymes oxidizing ellipticin in human neuroblastoma cells. TSA in the presence of ellipticine increases expression of CYP1A1 a CYP3A4 in...
Modulation of activities and expression of enzymes metabolizing ellipticine by histone deacetylase inhibitor trichostatin A
Kopejtková, Barbora
Histone deacetylase inhibitor trichostatin A (TSA) increases cytotoxicity of antineoplastic agent ellipticine to human neuroblastoma cells. Its mechanism of action has not yet been explained. One of the possible mode of action is conformational change in chromatin, which leads to changes in DNA that is more accessible to covalent modification and intercalation. The aim of this work is to study another mode of action, which can explain this phenomenon. The question is, if TSA can increase cytotoxicity of ellipticine to human neuroblastoma cells by modulation of activities and expression of cytochromes P450 and peroxidases. These enzymes are responsible for cytotoxicity of ellipticine to human neuroblastoma cells. TSA has no effect on oxidation of ellipticine mediated by cytochromes P450 leading to metabolites responsible for formation of ellipticine-DNA adducts and detoxication metabolites. TSA increases formation of ellipticine dimer, which is a detoxication metabolite, forming during its oxidation by peroxidases. TSA has no effect on activities of CYP1A1, CYP1A2, CYP3A, which significantly participate in oxidation of ellipticine. TSA modulates expression of enzymes oxidizing ellipticin in human neuroblastoma cells. TSA in the presence of ellipticine increases expression of CYP1A1 a CYP3A4 in...
Immunotherapy of HPV16 - associated cancers and regulation of antitumour immune response
Štěpánek, Ivan ; Reiniš, Milan (advisor) ; Lipoldová, Marie (referee) ; Němečková, Šárka (referee)
The MHC class I status of tumour cells during immunotherapy is often underestimated. It represents one of important tumour escape mechanisms and thus can contribute to the failure of most of the cancer clinical trials that are usually based on the induction of cytotoxic T cell responses. Epigenetic changes in the promoters of genes involved in the MHC class I Ag presentation can result in decreased expression of the cell surface MHC molecules on tumour cells. Thus, epigenetic modifiers can restore an expression of the MHC class I molecules and make tumours visible to the CD8+ effector cells. Besides the epigenetic changes on the tumour cells, epigenetic modulators affect cells of the immune system such as dendritic cells (DC). Tumour cells can escape from the immune response not only by changes in the cancer cells, but also by influencing, expanding and/or activating immunoregulatory cell populations, such as regulatory T cells (Treg). This thesis focuses on the potential of the DC-based vaccines against HPV-16-associated tumours with a different MHC class I expression, on the combination of cancer immunotherapy with the treatment using epigenetic modifiers, with special attention paid to their effects on DC, and, finally, on the impacts of the anti-CD25 antibody (used for Treg elimination) on Treg and NKT...
Modulation of activities and expression of enzymes metabolizing ellipticine by histone deacetylase inhibitor trichostatin A
Kopejtková, Barbora
Histone deacetylase inhibitor trichostatin A (TSA) increases cytotoxicity of antineoplastic agent ellipticine to human neuroblastoma cells. Its mechanism of action has not yet been explained. One of the possible mode of action is conformational change in chromatin, which leads to changes in DNA that is more accessible to covalent modification and intercalation. The aim of this work is to study another mode of action, which can explain this phenomenon. The question is, if TSA can increase cytotoxicity of ellipticine to human neuroblastoma cells by modulation of activities and expression of cytochromes P450 and peroxidases. These enzymes are responsible for cytotoxicity of ellipticine to human neuroblastoma cells. TSA has no effect on oxidation of ellipticine mediated by cytochromes P450 leading to metabolites responsible for formation of ellipticine-DNA adducts and detoxication metabolites. TSA increases formation of ellipticine dimer, which is a detoxication metabolite, forming during its oxidation by peroxidases. TSA has no effect on activities of CYP1A1, CYP1A2, CYP3A, which significantly participate in oxidation of ellipticine. TSA modulates expression of enzymes oxidizing ellipticin in human neuroblastoma cells. TSA in the presence of ellipticine increases expression of CYP1A1 a CYP3A4 in...
Modulation of activities and expression of enzymes metabolizing ellipticine by histone deacetylase inhibitor trichostatin A
Kopejtková, Barbora ; Kubíčková, Božena (referee) ; Stiborová, Marie (advisor)
Histone deacetylase inhibitor trichostatin A (TSA) increases cytotoxicity of antineoplastic agent ellipticine to human neuroblastoma cells. Its mechanism of action has not yet been explained. One of the possible mode of action is conformational change in chromatin, which leads to changes in DNA that is more accessible to covalent modification and intercalation. The aim of this work is to study another mode of action, which can explain this phenomenon. The question is, if TSA can increase cytotoxicity of ellipticine to human neuroblastoma cells by modulation of activities and expression of cytochromes P450 and peroxidases. These enzymes are responsible for cytotoxicity of ellipticine to human neuroblastoma cells. TSA has no effect on oxidation of ellipticine mediated by cytochromes P450 leading to metabolites responsible for formation of ellipticine-DNA adducts and detoxication metabolites. TSA increases formation of ellipticine dimer, which is a detoxication metabolite, forming during its oxidation by peroxidases. TSA has no effect on activities of CYP1A1, CYP1A2, CYP3A, which significantly participate in oxidation of ellipticine. TSA modulates expression of enzymes oxidizing ellipticin in human neuroblastoma cells. TSA in the presence of ellipticine increases expression of CYP1A1 a CYP3A4 in...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.